Print page    

Our Research Findings

Findings from basic research are published in international scientific journals and discussed at conferences. They provide the basis for progress in medicine and technology. Our research findings are published in international journals in the form of scientific articles. You will find an overview of our work in our chronological publication list. Most of these journals are available in university libraries.

The articles and research reports listed below were written with the general public in mind and are more easily understandable.

English Press Releases by the Max Planck Society

Dopamine leaves its mark in brain scans

BOLD signals in functional magnetic resonance imaging do not always reflect what nerve cells are doing.


Nov. 2014


How does the research on primates benefit humans?

There are few topics as controversial as research involving experiments on animals in general and primates in particular.

Sept. 2014


Synchronous oscillations in the short-term memory

Although its duration is brief, short term memory is a complex network of neurons in the brain that includes different brain regions. To store the information, these regions must work together. Researchers from the Max Planck Institute for Biological Cybernetics in Tübingen have now discovered that the participating regions must be active at the same time to enable us to form short-term memories of things that happen.

Sept. 2014


Understanding the human brain

Functional magnetic resonance images reflect input signals of nerve cells.

Sept. 2014


The seat of consciousness

At least two regions of the brain decide what we perceive.

Sept. 2014


Neural interaction in periods of silence

Tübinger neurophysiologists develop new method to study widespread networks of neurons responsible for our memory.

Nov. 2012


Conscious perception is a matter of global neural networks

New findings support the view that the content of consciousness is not localised in a unique cortical area.

June 2012



Rare neurons discovered in monkey brains

Max Planck scientists discover brain cells in monkeys that may be linked to self-awareness and empathy in human.

May 2012

Seeing movement: Why the world in our head stays still when we move our eyes

Scientists from Tübingen discovered new functions of brain regions that are responsible for seeing movement.

Mar. 2012

Short-term memory is based on synchronized brain oscillations

Scientists have now discovered how different brain regions cooperate during short-term memory.

Jan. 2012


Voice cells for voice recognition

Specific nerve cells process vocal information from conspecifics.

Aug. 2011

Similar structures for face selectivity in human and monkey brains
Using functional magnetic resonance imaging (fMRI), scientists at the Max Planck Institute for Biological Cybernetics in Tübingen have now discovered that the circuitry for face processing in the brain is remarkably similar in both macaques and humans. Consequently, macaque monkeys could be suitable model organisms for studying human disorders such as autism or prosopagnosia, so-called "face blindness".
April 2011

Perceptual changes - a key to our consciousness
Researchers around Andreas Bartels at the Werner Reichardt Centre for Integrative Neurosciences (CIN) and the Max Planck Institute for Biological Cybernetics in Tübingen used the phenomenon of "binocular rivalry" to decipher a key mechanism of the brain functions that contributes to conscious visual perception.

Nov. 2010

Recognition at first glance
With the help of the so called Thatcher illusion, scientists of the Max Planck Institute for Biological Cybernetics have examined how people and macaque monkeys recognize faces and process the information in the brain. They found out that both species perceive the faces of their kin immediately, while the faces of the other species are processed in a different way.

June 2010

How to read brain activity?
For the very first time, scientists have shown what EEG can really tell us about how the brain functions.

Dec. 2009

Regions of the brain can rewire themselves
Scientists in Tübingen have proven for the first time that widely-distributed networks of nerves in the brain can fundamentally reorganize as required.
March 2009

Here`s looking at you, fellow!
Humans and monkeys are experts in face recognition making them even more akin than previously thought.
Feb. 2009

Whose voice is that
Max Planck scientists discover a "voice" area in the brain of a nonhuman primate.
Feb. 2008

A neural mosaic of tones
Max Planck researchers map out numerous areas in the brain where sound frequencies are processed.
June 2006

New insights in brain tomography
Functional imaging signals indicate weakening in brain activity.
April 2006

Activity reports (in german only)

Smart Contrast Agents for functional Magnetic Resonance Imaging
Modern medical diagnostics and brain research would be unthinkable without magnetic resonance imaging (MRI). In addition to traditional imaging, which reveals anatomical structures, functional MRI (fMRI) has become a valuable tool. It comes close to allowing us to watch the brain at work and has contributed considerably to the advances in human cognitive neuroscience. However, fMRI is an indirect method, as it measures a surrogate signal, based on hemodynamics. Smart contrast agents (SCAs) shall overcome this limitation and allow a direct access to neuronal activity.


Integration of Touch and Sound in Auditory Cortex
New results demonstrate that those regions of the brain uniquely devoted to the processing of a single sense are rarer than classically thought. Instead, most of the brain is concerned with merging information across senses and creating a coherent percept.

Functional Magnetric Resonance Imaging of the Monkey Brain
Our research concentrates on the neural mechanisms of cognitive functions in the primate. Specific projects include investigations aiming to elucidate (a) how brain areas involved in object recognition interact and integrate information that is critical for the task at hand, (b) what kind of neural activity in the association visual cortices, e.g. the inferior temporal cortex, underlies the ability of subjects (be they humans or monkeys) to assess object similarity and perform categorization and recognition, and (c) how brains accomplish the perceptual organization involved in visual cognition. We also study the ability of networks of neurons to reorganize in response to extensive familiarity or deafferentation, that is, deprivation of their sensory input. Results from such investigations over the last decade strongly suggest that stimulus or task-related neural activity is distributed over large parts of the brain, covering different cortical and subcortical areas whose synergistic co-activation probably d termines the neural states underlying various conscious behaviours. Attempts to understand the organization of such global networks are hampered by the large gaps that exist between the different kinds of investigations of the nervous system. Neuroimaging studies in humans are highly inclusive, in that one can record activity from all brain areas at the same time, but they lack the ability to tell us anything about the local processes underlying the observed stimulus-induced activation patterns. Physiological studies, on the other hand, can record the activity patterns of single neurons or of small neural assemblies with outstanding spatial and temporal resolution, but are unable to capture the concurrent activation of other brain parts, and thus are often ambiguous as to the exact role of single units in various behaviours. An ideal strategy would be to find a way to combine spatiotemporally resolved functional magnetic resonance imaging (fMRI) with intracortical electrophysiology conducted with single or mu tiple microelectrodes. Convinced of the benefits of such an integrated approach, we recently developed an fMRI system for the nonhuman primate and used it to show that this neuroimaging technique can be used in monkeys to obtain (a) high resolution activity maps of their brain with excellent spatial localization, (b) a view of the organization of networks involved in scene, motion, and visual form analysis, (c) ultra-high resolution fMRI with intraosteally implanted radio frequency coils, (d) detailed connectivity patterns and tracings of pathways crossing several synapses in the living animal with injections of paramagnetic agents, and (e) excellent retinotopic mapping of extrastriate cortex. This methodology is currently used to answer fundamental question regarding visual perception and object recognition.

Reports in the Science Magazine MaxPlanckResearch

The Eyes Hear, Too
Our brain, more than anything else, determines what we hear. How it does that is a question that researchers in the Department for the Physiology of Cognitive Processes at the Max Planck Institute for Biological Cybernetics in Tübingen are trying to answer. Led by Nikos K. Logothetis, the scientists study not only brain areas that are used for this, but also how the acoustic information is combined with the brain's impressions.

A Mosaic of Tones 
The brain filters what we hear. One of the reasons it is able to do this is because particular groups of neurons react only to specific sound frequencies. Neurobiologists at the Max Planck Institute for Biological Cybernetics in Tübingen used high-resolution functional magnetic resonance imaging (fMRI) of nonhuman primates to create a frequency map for 11 exceptionally small auditory fields in the brain. They did this by identifying neuronal fields that are activated either by single frequencies (tones) or by combinations of frequencies. Many of the findings will now aid in human imaging, which for more than a decade has had difficulty doing such a large-scale mapping as was accomplished here in some of our closest primate relatives.

A Mature Brain Does Not Adapt
To what extent are nerve cells in the cortex able to reorganize themselves to compensate for damage following a stroke or other defects? From experiments with macaques, neurobiologists at the Max Planck Institute for Biological Cybernetics in Tübingen have now discovered that no reorganization of nerve cells in the primary visual cortex takes place after damage to the retina. This result contradicts previous concepts that primary sensory systems in the brain cortex retain plasticity and can compensate for damage up to adulthood.

Seeing by Learning
Cross-linkage of nerve cells in the higher cognitive regions of the brain enables people to remember other people, objects and events. Thanks to the plasticity of such networks, we can continuously store new content. Researchers at the Max Planck Institute for Biological Cybernetics in Tübingen have now discovered that learning also has a feedback effect on the neurons of the brain’s visual centers themselves. And that this optimizes interaction and feedback between sensory and associative brain areas, in addition to the “upward” information flow from visual areas.

Monkeys Read Faces too
Investigating the link between facial and vocal expressions is a prerequisite for understanding human speech perception. Scientists at the Max Planck Institute for Biological Cybernetics in Tübingen have now shown that not only humans, but also rhesus monkeys are able to understand the connection between their own species’ facial and vocal expressions. The researchers see this ability in monkeys as an evolutionary precursor to human speech perception.

Inside the Chamber 
The development of magnetic resonance imaging (MRI) is one of basic research’s success stories. Nowadays it is a fundamental part of medical diagnostics. Yet this research has been a lengthy process – it is over fifty years since physicists first began investigating so-called nuclear magnetic resonance. By adopting new methods, max Planck scientists in Tübingen have succeeded in considerably extending their understanding of the basic principles of functional MRI, thereby advancing cognitive neurobiology.

Press reports

Press reports about the research carried out in the department “Physiology of Cognitive Processes” can be found under PRESS.